3.7.13 \(\int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\) [613]

Optimal. Leaf size=337 \[ \frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 (a-2 b) \sqrt {a+b} \cot (c+d x) F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 b \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d} \]

[Out]

2*(a-b)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(
1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d-2*(a-2*b)*cot(d*x+c)*EllipticF((a+b*cos(d
*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*
(1+sec(d*x+c))/(a-b))^(1/2)/d-2*b*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(a
+b)/b,((-a-b)/(a-b))^(1/2))*(a+b)^(1/2)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.30, antiderivative size = 337, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2877, 2888, 3077, 2895, 3073} \begin {gather*} -\frac {2 (a-2 b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} F\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}+\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d}-\frac {2 b \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \Pi \left (\frac {a+b}{b};\text {ArcSin}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])
], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*(a -
2*b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((
a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d - (2*b*Sqrt[a +
b]*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a
+ b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d

Rule 2877

Int[((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> D
ist[d^2/b^2, Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Dist[(b*c - a*d)/b^2, Int[Simp[b*
c + a*d + 2*b*d*Sin[e + f*x], x]/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b,
 c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]

Rule 2888

Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
 x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]

Rule 2895

Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]

Rule 3073

Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
 f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
 f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]

Rule 3077

Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Dist[(A - B)/(a - b), Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Dist[(A*b - a*B)/(a - b), Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin
[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && NeQ[A, B]

Rubi steps

\begin {align*} \int \frac {(a+b \cos (c+d x))^{3/2}}{\cos ^{\frac {3}{2}}(c+d x)} \, dx &=a \int \frac {a+2 b \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx+b^2 \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}} \, dx\\ &=-\frac {2 b \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}+a^2 \int \frac {1+\cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx-(a (a-2 b)) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \, dx\\ &=\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) E\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 (a-2 b) \sqrt {a+b} \cot (c+d x) F\left (\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}-\frac {2 b \sqrt {a+b} \cot (c+d x) \Pi \left (\frac {a+b}{b};\sin ^{-1}\left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 12.20, size = 357, normalized size = 1.06 \begin {gather*} \frac {2 a (a+b \cos (c+d x)) \sin (c+d x)+\cos (c+d x) \left (-\frac {2 a (a+b) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}+\frac {2 \left (a^2+2 a b-b^2\right ) \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} F\left (\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}+\frac {4 b^2 \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \Pi \left (-1;\text {ArcSin}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}-a b \sec \left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {3}{2} (c+d x)\right )-2 a^2 \tan \left (\frac {1}{2} (c+d x)\right )+a b \tan \left (\frac {1}{2} (c+d x)\right )\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^(3/2)/Cos[c + d*x]^(3/2),x]

[Out]

(2*a*(a + b*Cos[c + d*x])*Sin[c + d*x] + Cos[c + d*x]*((-2*a*(a + b)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + C
os[c + d*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] +
(2*(a^2 + 2*a*b - b^2)*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/
2]], (-a + b)/(a + b)])/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])] + (4*b^2*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 +
 Cos[c + d*x]))]*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)])/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*
x])] - a*b*Sec[(c + d*x)/2]*Sin[(3*(c + d*x))/2] - 2*a^2*Tan[(c + d*x)/2] + a*b*Tan[(c + d*x)/2]))/(d*Sqrt[Cos
[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1182\) vs. \(2(313)=626\).
time = 0.27, size = 1183, normalized size = 3.51

method result size
default \(\text {Expression too large to display}\) \(1183\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/d*((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*cos(d*x+c)*sin(d*x+c)*El
lipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+2*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/
2))*a*b-cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2-cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/
2))*a^2-cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*
EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+2*cos(d*x+c)*sin(d*x+c)*(cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b
))^(1/2))*b^2+(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+co
s(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)+2*b*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+
c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a*sin(d*x+c)-(cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticF((-1+cos(d*x+c))/sin(d*x+c)
,(-(a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b)
)^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2*sin(d*x+c)-(cos(d*x+c)/(1+cos(d*x+c)))^
(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticE((-1+cos(d*x+c))/sin(d*x+c),(-(a-b)/(a+b))^(1/2))
*a*b*sin(d*x+c)+2*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*((a+b*cos(d*x+c))/(1+cos(d*x+c))/(a+b))^(1/2)*EllipticPi((
-1+cos(d*x+c))/sin(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*b^2*sin(d*x+c)+cos(d*x+c)^2*a*b+a^2*cos(d*x+c)-cos(d*x+c)*a
*b-a^2)/(a+b*cos(d*x+c))^(1/2)/sin(d*x+c)/cos(d*x+c)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="fricas")

[Out]

integral((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\cos ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**(3/2)/cos(d*x+c)**(3/2),x)

[Out]

Integral((a + b*cos(c + d*x))**(3/2)/cos(c + d*x)**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^(3/2)/cos(d*x+c)^(3/2),x, algorithm="giac")

[Out]

integrate((b*cos(d*x + c) + a)^(3/2)/cos(d*x + c)^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}}{{\cos \left (c+d\,x\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(3/2),x)

[Out]

int((a + b*cos(c + d*x))^(3/2)/cos(c + d*x)^(3/2), x)

________________________________________________________________________________________